Although a large number of mutations that drive the development and progression of many types of cancer have been identified through large-scale research studies, some tumor types have not been deeply characterized. New technologies and the knowledge gained from previous genomic studies could be used to define the full set of driver mutations in many cancers. In some cancers, for example, the ability to compare tumor and normal DNA from the same patient allows researchers to discover potential driver mutations of those cancers.
Another opportunity is to expand the current use of genomic methods to investigate the molecular basis of clinical phenotypes. This approach could help researchers identify genetic changes that may distinguish aggressive cancers from indolent ones, for example. Similar approaches could be used to study the molecular basis of response to a given therapy, as well as mechanisms of resistance to treatment.
The wealth of data emerging from cancer genome studies increasingly will be integrated with patients’ medical histories and clinical data. These integrated results could be used to develop more tailored approaches to cancer diagnosis and treatment, as well as to improve methods of predicting cancer risk, prognosis, and response to treatment.
Genomic tools will also be essential for analyzing results from precision medicine clinical trials, such as those being conducted by NCI’s National Clinical Trials Network.