The study of cancer genomes has revealed abnormalities in genes that drive the development and growth of many types of cancer. This knowledge has improved our understanding of the biology of cancer and led to new methods of diagnosing and treating the disease.
For example, the discovery of cancer-causing genetic and epigenetic changes in tumors has enabled the development of therapies that target these changes as well as diagnostic tests that identify patients who may benefit from these therapies. One such targeted drug is vemurafenib (ZELBORAF®), which was approved by the Food and Drug Administration (FDA) in 2011 for the treatment of some patients with melanoma who have a specific mutation in the BRAF gene as detected by an FDA-approved test.
Over the past decade, large-scale research projects have begun to survey and catalog the genomic changes associated with a number of types of cancer. These efforts have revealed unexpected genetic similarities across different types of tumors. Mutations in the HER2 gene, for instance, have been found in a number of cancers, including breast, bladder, pancreatic, and ovarian.
Researchers have also shown that a given type of cancer, such as breast, lung, and stomach, may have several molecular subtypes. For some types of cancer, the existence of certain subtypes had not been known until researchers began to profile the genomes of tumor cells.
The results of these projects illustrate the diverse landscape of genetic alterations in cancer and provide a foundation for understanding the molecular basis of this group of diseases.